Holographic jet shapes and their evolution in strongly coupled plasma

Jasmine Brewer

In collaboration with

Krishna Rajagopal, Andrey Sadofyev, and Wilke van der Schee

Goal: understand parton energy loss in QGP

Jet modification observables

Modeling jets in QGP

- Use jets in holography to model jets in QCD
- Different from the hybrid model

Trajectories of bit of string's energy

Normalized energy flux on boundary

2

(figures: Chesler & Rajagopal 1511.07567)

Holographic jets in plasma always get wider

Some energy lost, some escapes

Near jet axis, jets in plasma actually get narrower!

CMS: [1310.0878v2]

 $p_T^{\text{jet}} > 100 \text{ GeV}$ $0.3 < |\eta^{\text{jet}}| < 2$ Anti- $k_T R = 0.3$ 0-10% centrality

Need to consider an ensemble of jets

Constructing an ensemble of jets

- Distribution of initial jet energies $\sim E^{-6}$
- Distribution of jet opening angles calculated in pQCD

[Larkoski, Marzani, Soyez, Thaler 1402.2657]

$$C_1^{(1)} = \sum_{hadrons \ i,j} z_i z_j \frac{|\theta_{ij}|}{R} \sim \text{ jet width}$$

Two free model parameters

- $C_1^{(1)} = a \sigma_0$ jet width ~ holographic opening angle
- $T_{SYM} = b T_{QCD}$

Individual jets widen in holography, but ensemble of jets may narrow or widen

Rajagopal, Sadofyev, and van der Schee PRL 116, 211603 (2016)

Outline of Key Results

- Predict the jet shape from real string dynamics in holography
- We predict modification to pp observables by expanding, cooling droplet of plasma
 - Presented here: jet shape modification, dijet asymmetry
- Advertisement: What can we get by including 3-jet events in holography?

Solving full string equations of motion

Freedom to specify initial conditions

Example velocity initial conditions

See e.g. [0810.1985]

Jet shape determined by distribution of energy along string after equilibration

Single-parameter fit to jet shape in proton-proton

constrains free parameter a

 $p_{T}^{jet} > 100 \text{ GeV}$ 0.3< $|\eta^{jet}| < 2$ Anti- k_{T} R=0.3

Simplified Model of Plasma Evolution

(See PRL 116, 211603 for details)

Fit free parameter b from R_{AA}

Shown: b=0.203

Jet shape modification

- Agrees qualitatively with data at small r
- Large r behavior need wake

Dijet asymmetry in proton-proton

$$A_J = \frac{p_{T1} - p_{T2}}{p_{T1} + p_{T2}}$$

Jets in Plasma

Initial distributions of dijet asymmetry, angle between leading and subleading jets from PYTHIA+HYDJET [CMS 1202.5022]

Dijet asymmetry modification

data points and PYTHIA+HYDJET: CMS 1202.5022

3-jet events in holography

(Work in progress)

See also: Casalderrey-Solana and Ficnar 1512.00371

Main messages

Jet shape from full string dynamics

ο(r)

0.1

0.1

0.1

0.1

0.1

0.2

0.3

0.4

0.5

r

Jet shape modification

Dijet asymmetry modification

Back up Slides

\mathcal{N} =4 SYM and QCD

Why study $\mathcal{N}=4$ SYM?

- Quark gluon plasma is strongly coupled
- QCD is very hard at strong coupling
- QCD has no known gravity dual; \mathcal{N} =4 SYM does

N=4 SYM from classical gravity	QCD
$1/N_c^2 = 0$	$1/N_c^2 = 1/9$
Infinite coupling	Running coupling
Conformal	Approximately conformal for $T \gtrsim 2 T_c$
$\eta/s = 1/4\pi \approx 0.08$	$\eta/s \approx 0.1$
No hadronization	Hadronization

lattice results suggest $1/N_c^2 = 1/9 \sim 1/N_c^2 = 0$

 \mathcal{N} =4 SYM not asymptotically free

Similar hydrodynamics of plasma phases

No clear analog of jet reconstruction, jet substructure

Hope: Qualitative lessons about QCD plasma from $\mathcal{N}=4$ SYM

Modeling "Jets" in N=4 SYM

